Is Now Part of ## ON Semiconductor® # To learn more about ON Semiconductor, please visit our website at www.onsemi.com Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com. ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer May 2014 ## **FDMS7700S** ## **Dual N-Channel PowerTrench® MOSFET** N-Channel: 30 V, 30 A, 7.5 m Ω N-Channel: 30 V, 40 A, 2.4 m Ω #### **Features** Q1: N-Channel - Max $r_{DS(on)}$ = 7.5 m Ω at V_{GS} = 10 V, I_D = 12 A - Max $r_{DS(on)}$ = 12 m Ω at V_{GS} = 4.5 V, I_D = 10 A Q2: N-Channel - Max $r_{DS(on)} = 2.4 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 20 \text{ A}$ - Max $r_{DS(on)} = 2.9 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 18 \text{ A}$ - RoHS Compliant #### **General Description** This device includes two specialized N-Channel MOSFETs in a dual MLP package. The switch node has been internally connected to enable easy placement and routing of synchronous buck converters. The control MOSFET (Q1) and synchronous SyncFETTM (Q2) have been designed to provide optimal power efficiency. #### **Applications** - Computing - Communications - General Purpose Point of Load ■ Notebook VCORE #### Power 56 #### MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted | Symbol | Parameter | | Q1 | Q2 | Units | |-----------------------------------|--|------------------------|-------------------|-------------------|-------| | V _{DS} | Drain to Source Voltage | | 30 | 30 | V | | V _{GS} | Gate to Source Voltage | (Note 3) | ±20 | ±20 | V | | | Drain Current -Continuous | T _C = 25 °C | 30 | 40 | | | I _D | -Continuous | T _A = 25 °C | 12 ^{1a} | 22 ^{1b} | Α | | | -Pulsed | | 40 | 60 | | | D | Power Dissipation for Single Operation | T _A = 25 °C | 2.2 ^{1a} | 2.5 ^{1b} | ١٨/ | | P_{D} | | T _A = 25 °C | 1.0 ^{1c} | 1.0 ^{1d} | W | | T _J , T _{STG} | Operating and Storage Junction Temperature Range | | -55 to | +150 | °C | #### **Thermal Characteristics** | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | 57 ^{1a} | 50 ^{1b} | | |-----------------|---|-------------------|-------------------|------| | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | 125 ^{1c} | 120 ^{1d} | °C/W | | $R_{\theta JC}$ | Thermal Resistance, Junction to Case | 3.5 | 2 | | #### **Package Marking and Ordering Information** | Device Marking | Device | Package | Reel Size | Tape Width | Quantity | |----------------|-----------|----------|-----------|------------|------------| | FDMS7700S | FDMS7700S | Power 56 | 13 " | 12 mm | 3000 units | ## **Electrical Characteristics** $T_J = 25$ °C unless otherwise noted | Symbol | Parameter | Test Conditions | | Min | Тур | Max | Units | |--------------------------------------|------------------------------------|--|----|-----|-----|-----|---------| | Off Chara | octeristics | | | | | | | | BV _{DSS} | Drain to Source Breakdown Voltage | $I_D = 250 \mu A, V_{GS} = 0 V$ | Q1 | 30 | | | V | | 2.022 | Brain to Course Broakaewii Vollage | $I_D = 1 \text{ mA}, V_{GS} = 0 \text{ V}$ | Q2 | 30 | | | | | $\frac{\Delta BV_{DSS}}{\Delta T_J}$ | Breakdown Voltage Temperature | $I_D = 250 \mu A$, referenced to 25 °C | Q1 | | 15 | | mV/°C | | ΔT_{J} | Coefficient | I _D = 1 mA, referenced to 25 °C | Q2 | | 14 | | IIIV/ C | | ı | Zero Gate Voltage Drain Current | V - 24 V V - 0 V | Q1 | | | 1 | μΑ | | IDSS | Zero Gate voltage Drain Current | $V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$ | Q2 | | | 500 | μΑ | | ı | Cata to Source Lackage Current | V - 30 V V - 0 V | Q1 | | | 100 | nA | | I _{GSS} | Gate to Source Leakage Current | $V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$ | Q2 | | | 100 | nA | #### **On Characteristics** | V _{GS(th)} | Gate to Source Threshold Voltage | $V_{GS} = V_{DS}, I_D = 250 \mu A$
$V_{GS} = V_{DS}, I_D = 1 mA$ | Q1
Q2 | 1
1 | 1.8
1.5 | 3
3 | V | |--|---|--|----------|--------|-------------------|-------------------|-------| | $\frac{\Delta V_{GS(th)}}{\Delta T_J}$ | Gate to Source Threshold Voltage
Temperature Coefficient | I_D = 250 μ A, referenced to 25 °C I_D = 1 mA, referenced to 25 °C | Q1
Q2 | | -6
-4 | | mV/°C | | | Drain to Source On Resistance | $V_{GS} = 10 \text{ V}, \ I_D = 12 \text{ A}$
$V_{GS} = 4.5 \text{ V}, \ I_D = 10 \text{ A}$
$V_{GS} = 10 \text{ V}, \ I_D = 12 \text{ A}, \ T_J = 125 ^{\circ}\text{C}$ | Q1 | | 6.0
8.5
8.3 | 7.5
12
12 | mΩ | | r _{DS(on)} | Diam to Source On Resistance | $V_{GS} = 10 \text{ V}, \ I_D = 20 \text{ A}$
$V_{GS} = 4.5 \text{ V}, \ I_D = 18 \text{ A}$
$V_{GS} = 10 \text{ V}, \ I_D = 20 \text{ A}, \ T_J = 125 ^{\circ}\text{C}$ | Q2 | | 1.9
2.2
2.1 | 2.4
2.9
3.4 | 11152 | | g _{FS} | Forward Transconductance | $V_{DS} = 5 \text{ V}, I_{D} = 12 \text{ A}$
$V_{DS} = 5 \text{ V}, I_{D} = 20 \text{ A}$ | Q1
Q2 | | 63
160 | | S | ## **Dynamic Characteristics** | C _{iss} | Input Capacitance | Q1:
V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHZ | Q1
Q2 | 1315
7240 | 1750
9630 | pF | |------------------|------------------------------|--|----------|--------------|--------------|----| | C _{oss} | Output Capacitance | Q2: | Q1
Q2 | 445
2690 | 600
3580 | pF | | C _{rss} | Reverse Transfer Capacitance | $V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHZ}$ | Q1
Q2 | 45
185 | 70
280 | pF | | R_g | Gate Resistance | | Q1
Q2 | 0.9
0.8 | | Ω | ## **Switching Characteristics** | t _{d(on)} | Turn-On Delay Time | | | Q1
Q2 | 8.6
21 | 18
34 | ns | |---------------------|-------------------------------|---|--|----------|------------|-----------|----| | t _r | Rise Time | Q1:
V _{DD} = 15 V, I _D = 12 <i>i</i> | A, $R_{GEN} = 6 \Omega$ | Q1
Q2 | 2.5
9.2 | 10
18 | ns | | t _{d(off)} | Turn-Off Delay Time | Q2:
V _{DD} = 15 V, I _D = 20 / | A Roon = 60 | Q1
Q2 | 20
58 | 32
93 | ns | | t _f | Fall Time | _ v _{DD} = 10 v, 1 _D = 20 / | rt, rtgen – 032 | Q1
Q2 | 2.3
6.8 | 10
14 | ns | | Qg | Total Gate Charge | $V_{GS} = 0 V to 10 V$ | | Q1
Q2 | 20
105 | 28
147 | nC | | Qg | Total Gate Charge | V _{GS} = 0 V to 4.5 V | V _{DD} = 15 V,
I _D = 12 A | Q1
Q2 | 9.3
48 | 13
67 | nC | | Q _{gs} | Gate to Source Gate Charge | | Q2
V _{DD} = 15 V, | Q1
Q2 | 4.3
19 | | nC | | Q _{gd} | Gate to Drain "Miller" Charge | | I _D = 20 A | Q1
Q2 | 2.2
11 | | nC | ## **Electrical Characteristics** $T_J = 25$ °C unless otherwise noted | Symbol | Parameter | Test Conditions | Туре | Min | Тур | Max | Units | |-----------------|---------------------------------------|--|----------|-----|------------|------------|-------| | Drain-Sou | rce Diode Characteristics | | | | | | | | V_{SD} | Source to Drain Diode Forward Voltage | $V_{GS} = 0 \text{ V}, I_S = 12 \text{ A}$ (Note 2)
$V_{GS} = 0 \text{ V}, I_S = 20 \text{ A}$ (Note 2) | | | 0.8
0.7 | 1.2
1.2 | V | | t _{rr} | Reverse Recovery Time | Q1
I _F = 12 A, di/dt = 100 A/μs | Q1
Q2 | | 27
53 | 43
85 | ns | | Q _{rr} | Reverse Recovery Charge | Q2 $I_F = 20 \text{ A, di/dt} = 300 \text{ A/}\mu\text{s}$ | Q1
Q2 | | 10
100 | 18
160 | nC | **Notes:**1: $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design. a. 57 °C/W when mounted on a 1 in² pad of 2 oz copper b. 50 °C/W when mounted on a 1 in² pad of 2 oz copper c. 125 °C/W when mounted on a minimum pad of 2 oz copper d. 120 °C/W when mounted on a minimum pad of 2 oz copper - 2: Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%. - 3: As an N-ch device, the negative Vgs rating is for low duty cycle pulse ocurrence only. No continuous rating is implied. #### Typical Characteristics (Q1 N-Channel)T_J = 25°C unless otherwise noted Figure 1. On Region Characteristics Figure 3. Normalized On Resistance vs Junction Temperature Figure 5. Transfer Characteristics Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage Figure 4. On-Resistance vs Gate to Source Voltage Figure 6. Source to Drain Diode Forward Voltage vs Source Current ## Typical Characteristics (Q1 N-Channel)T_J = 25°C unless otherwise noted Figure 7. Gate Charge Characteristics Figure 8. Capacitance vs Drain to Source Voltage Figure 9. Maximum Continuous Drain Current vs Case Temperature Figure 10. Forward Bias Safe Operating Area Figure 11. Single Pulse Maximum Power Dissipation ## Typical Characteristics (Q1 N-Channel)T_J = 25°C unless otherwise noted Figure 12. Junction-to-Ambient Transient Thermal Response Curve #### **Typical Characteristics (Q2 SyncFET)** Figure 13. On-Region Characteristics Figure 15. Normalized On-Resistance vs Junction Temperature Figure 17. Transfer Characteristics Figure 14. Normalized on-Resistance vs Drain Current and Gate Voltage Figure 16. On-Resistance vs Gate to Source Voltage Figure 18. Source to Drain Diode Forward Voltage vs Source Current ## **Typical Characteristics (Q2 SyncFET)** Figure 19. Gate Charge Characteristics Figure 20. Capacitance vs Drain to Source Voltage Figure 21. Maximum Continuous Drain Current vs Case Temperature Figure 22. Forward Bias Safe Operating Area Figure 23. Single Pulse Maximum Power Dissipation ## Typical Characteristics (Q2 SyncFET) Figure 24. Junction-to-Ambient Transient Thermal Response Curve ## Typical Characteristics (continued) ## SyncFETTM Schottky Body Diode Characteristics Fairchild's SyncFETTM process embeds a Schottky diode in parallel with PowerTrench[®] MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 25 shows the reverse recovery characteristic of the FDMS7700S. Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device. Figure 25. FDMS7700S SyncFETTM Body Diode Reverse Recovery Characteristic Figure 26. SyncFETTM Body Diode Reverse Leakage vs. Drain-Source Voltage RECOMMENDED LAND PATTERN (OPTION 1 - FUSED LEADS 5,6,7) 4.46 0.65(8X) # 2.67 0.54 0.92 1 2 3 4 RECOMMENDED LAND PATTERN (OPTION 2 - ISOLATED LEADS) #### NOTES: - A. PACKAGE DOES NOT FULLY CONFORM TO JEDEC STANDARD. - B. DIMENSIONS ARE IN MILLIMETERS. - C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009. - D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN. - E. DRAWING FILENAME: MKT-MLP08Prev2. ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative