
Maxim > Design Support > Technical Documents > Application Notes > iButton® > APP 158

Keywords: 1wire, 1-Wire, XML, tag, tagging, label, register, object, mechanism

APPLICATION NOTE 158

1-Wire® Tagging with XML
By: Brian Hindman, Senior Member Technical Staff, Software
Jun 07, 2002

Abstract: This document will present a 1-Wire Tag format in XML that describes the associations,
groupings, and sensing operations. The 1-Wire Tag can be thought of as data that can reside in a
traditional database, a file on a hard drive, or even in the memory of a 1-Wire device. The data indicates
the purposes of the 1-Wire device(s), their locations, and specific software classes to service and control
them. By carrying the 1-Wire Tag with a cluster of 1-Wire devices, the cluster can be self-describing and
self-configuring when presented to a new master application.

Introduction
All Maxim 1-Wire devices, including iButtons®, are individually assigned a 64-bit 1-Wire network address
number. Each number is laser engraved into the read-only memory of each device. Maxim manages this
number pool of 1019 entries so that each device has a guaranteed unique number assigned to it.

Once these 1-Wire devices leave Maxim, most customers will associate the 1-Wire network address
number with a physical object. The number can then be placed in a database and the physical object
tracked. With the introduction of more complex 1-Wire devices that perform sophisticated sensing,
instead of just tracking the object, the object can now be analyzed or even manipulated. This, combined
with the desire to group 1-Wire devices together into a cluster to perform a group function, makes a 1-
Wire Tagging scheme desirable.

Consider the scenario where two switches are found on a 1-Wire network. One switch is used as a
branch beyond which other 1-Wire devices are located, and the other switch is used to open a high
security door. To the 1-Wire master software, it is difficult to differentiate between the two devices
without first exercising them. But, if the master software first exercises the two switches, it could
inadvertently open the high security door. Without knowing the difference between the functionality of the
two switches beforehand, the 1-Wire master software can, in the above scenario, compromise security.
The recommended way to solve this problem is through 1-Wire Tagging.

This document will present a 1-Wire Tag format that describes the aforementioned associations,
groupings, and sensing operations. The 1-Wire Tag can be thought of as data that can reside in a
traditional database, a file on a hard drive, or even in the memory of a 1-Wire device. The data indicates
the purposes of the 1-Wire device(s), their locations, and specific software classes to service and control
them. By carrying the 1-Wire Tag with a cluster of 1-Wire devices, the cluster can be self-describing and
self-configuring when presented to a new master application.

This 1-Wire Tagging scheme requires that the reader know some of the basics of XML. For more

Page 1 of 20

http://www.maximintegrated.com/
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/65/c/iButton%26reg%3B#c65
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/65/c/iButton%26reg%3B#c65

information about XML, please visit the World Wide Web Consortium's (W3C) website, www.w3.org.
W3C is the governing body for the industry standards that define XML. XML tutorials can also be found
on the web at the following locations: www.w3schools.com/xml/default.asp and
http://java.sun.com/j2ee/1.3/docs/tutorial/doc/IntroXML2.html.

1-Wire Tag Specification
The 1-Wire Tag file specification as defined here can reside in a file on the 1-Wire sensor itself
(physical) or in another file system such as on the master (local) or in a database on a server (remote).
When the file is located in the memory of a 1-Wire device in the 1-Wire cluster (physical) it must be in
the form of a 1-Wire File Structure file. The file can reside in any normal memory 1-Wire device such as
the DS1993, DS2406, or DS2433. The specification for the 1-Wire File Structure can be found in
application note 114, "1-Wire File Structure."

The 1-Wire Tag file contains data represented in XML that describe the 1-Wire device's characteristics
and operations and/or an entire cluster or clusters of 1-Wire devices. The contents of the 1-Wire Tag file
is parsed by the master application to obtain the available characteristics and operations of the device or
cluster and provides self-registering capabilities to even unknown configurations of sensor clusters. The
file should preferably be named TAGX.000 on a 1-Wire device.

1-Wire Tag Definition
A 1-Wire Tag is a valid XML data object (can be thought of as a file or data stream) that contains
predefined XML elements and attributes that describe a 1-Wire device or cluster of 1-Wire devices. The
XML data object then is read and parsed by a master application (such as a Java™ program) and
software objects are then created to read each 1-Wire device, manipulate it, and show its various
relations to other devices or locations on the 1-Wire network.

Design Objectives
This is a small list of design objectives that went into the making of this specification.

1. When designing the XML 1-Wire Tag, make it as small as possible while maintaining human
readability.

a. Keep the 1-Wire Tag elements small in size.
b. When writing tag files into 1-Wire devices, remove all unnecessary white space.
c. Use empty XML elements, called mini tags, in small memory situations.

2. The master application should be able to parse multiple 1-Wire Tags to describe an entire 1-Wire
network. Multiple tags can reside either locally, remotely, or on the 1-Wire devices themselves.

3. When parsing 1-Wire Tags, the master application should create a list of software objects that can
fully describe, read, and manipulate each tagged 1-Wire device. This list should be kept as "flat",
simple, and small as possible. The master application should also return the 1-Wire Network's
topology of branches and nested branches.

4. For communicating to the 1-Wire devices, use one of the standard APIs available. Three APIs are
available: the 1-Wire API for Java, TMEX, and the 1-Wire Net Public Domain Kit. Information on
each of these APIs can be found here:
www.maximintegrated.com/products/ibutton/software/sdk/sdks.cfm. The 1-Wire API for Java, will
have a reference implementation of the 1-Wire Tagging scheme described in this document as part
of its API in Version 1.00 Alpha and above. Please note that this reference implementation does not
necessarily meet the specification found in this document in its entirety.

5. Parse the XML tags with an event-based parser, using the Simple API for XML (SAX)
implementation. Since its footprint is small and does not keep large data objects in memory, using

Page 2 of 20

http://www.w3.org/
http://www.w3schools.com/xml/default.asp
http://java.sun.com/j2ee/1.3/docs/tutorial/doc/IntroXML2.html
http://www.maximintegrated.com/app-notes/index.mvp/id/114
http://www.maximintegrated.com/products/ibutton/software/sdk/sdks.cfm

SAX will enable small devices (including MxTNI™ and handhelds) to use the 1-Wire XML tagging
format described in this document. Also, at the time of this writing, it has been verified that at least
two SAX-based XML parsers run successfully on MxTNI. Thus, they should be used to verify the
design. The first parser is MinML and can be found here: www.wilson.co.uk/. This was designed
specifically with MxTNI in mind. The second is NanoXML, which can be found here
http://nanoxml.sourceforge.net.

Parent Elements
There are four parent XML elements that make up a 1-Wire Tag file. A 1-Wire device can be classified in
this specification as one of three different objects (known collectively as tagged devices). These make up
the first three parent XML elements: branch, sensor, and actuator. The fourth element is a cluster and
represents a specific group of tagged devices. Please keep in mind that XML is case sensitive in nature
and that these elements should be in lower case.

Branch
A branch tagged device represents Maxim's line of 1-Wire switches (DS2406, DS2408, DS28EA00, etc.).
Thus, a 1-Wire network could be thought of as a tree, and to read or manipulate a particular tagged
device, one might have to go through a few branches to do it. The following is an example branch XML
element.

Example 1. Branch XML Element

<branch addr="77000000023CEC12">
 <label>Weather Station Switch</label>
 <channel>1</channel>
 <init>0</init>
 .
 .
 .
 (Other sensor, actuators, or branches can go here)
 .
 .
 .
</branch>

The XML element, <branch>, consists of a single attribute addr, along with at least three child elements,
<label>, <channel>, and <init>. The attribute value of addr is the tagged device's 1-Wire net address.
The child element, <label>, is a text description of the branch, the second child element, <channel>, is a
number representing which switch on the tagged device to close, and <init> is a number representing
the initial state of the switch.

Other child elements are possible. These can be other <sensor>, <actuator>, or even other <branch>
elements. Please note that branches can be nested.

Sensor
A sensor tagged device represents any 1-Wire device that can be used to "read" or "sense" something. It
could be something as simple as detecting a particular 1-Wire device's presence on the 1-Wire bus, to
reading a temperature from one of the many different thermometer devices available. The following is an
example XML sensor element.

Example 2. Sensor XML Element

<sensor addr="DD0000020057A101" type="Contact">
 <label>Northeast</label>

Page 3 of 20

http://www.wilson.co.uk/
http://nanoxml.sourceforge.net/

 <max>Making contact</max>
 <min>No contact</min>
</sensor>

The XML element, <sensor>, consists of two attributes, addr and type, along with the child elements that
are deemed necessary for a particular type. The attribute value of addr is the tagged device's 1-Wire net
address. The second attribute, type, is the type of sensor. When parsing the XML file, this attribute will
determine what kind of software object gets created for a particular type. In this example, the sensor is
of type "Contact", and according to the type "Contact" (please see Table 1 in the section of this
document entitled "Types") the following three child elements are needed: <label>, <max> and <min>.

The child element, <label>, is a text description of the sensor. The child element, <max>, is a text
message describing what occurs when the tagged device is in a certain state. In this instance, <max>
represents when the tagged device is present on the 1-Wire bus. The child element, <min>, is similar
except that <min> (usually being the opposite of <max>) is a message describing the state of the tagged
device when it is not connected to the 1-Wire bus.

Actuator
An actuator represents any tagged device that can be acted upon or exercised. This could be something
as simple as flipping a switch and making a buzzer sound to setting the wiper value of a 1-Wire
potentiometer and adjusting the light intensity in a room. The following is an example XML actuator
element.

Example 3. Actuator XML Element

<actuator addr="B700000018AE3212" type="Switch">
 <label>Buzzer</label>
 <max>Buzz!!!</max>
 <min>Sleep</min>
 <channel>0</channel>
 <init>0</init>
</actuator>

The XML element, <actuator>, consists of two attributes, addr and type, along with the child elements
that are deemed necessary for a particular type. The attribute value of addr is the tagged device's 1-
Wire net address. The second attribute, type, is the type of actuator. In this case, the type is "Switch".
Different actuators may have different numbers of child elements. For the particular actuator of type
"Switch", these specific child elements are needed: <label>, <max>, <min>, <channel>, <init>. The type
attribute is important. When parsing the XML file, this attribute will determine what kind of software object
gets created for a particular tagged device. For a list of sensor and actuator types, please see the
section of this document entitled "Types".

The child element, <label>, is a text description of the actuator. The child element, <max>, is a text field
representing a choice or a selection of a state into which the actuator can be placed. It can be thought of
as an item in a drop-down menu of a software application. In this instance, <max> represents the choice
of connecting the switch to make the buzzer sound. The child element, <min>, is similar, except that
<min> usually represents the opposite choice which, in this case, is switching the buzzer to the off or
"Silent" position.

Cluster
A cluster is a grouping of tagged devices and/or other clusters. It is made up of a tag and a single XML
attribute, "name". It can also have child elements made up of any other 1-Wire parent element (branch,
sensor, actuator, or cluster). Therefore, cluster is an element that can be nested. The following is an
example XML cluster element.

Page 4 of 20

Example 4. Cluster XML Element

<cluster name="Weather Station">
 .
 . (Other elements, such as branch, sensor, actuator, or
even other clusters would go here).
 .
</cluster>

Child Elements
Child elements are used only by the parent elements of tagged devices (<branch>, <sensor>, and
<actuator>). The eight child elements are as follows: <label>, <max>, <min>, <channel>, <init>, <scale>,
<hightrip>, and <lowtrip>. In this specification, all child elements can belong to any tagged device. When
parsed into software objects, each software object (representing a tagged device) should contain a data
member for each child element. However, depending upon the type attribute of the tagged device, some
elements will not be used. The following are examples of this.

Example 5. Child Element Examples

Contact Example:
<sensor addr="490000000212D016" type="Contact">
 <label>Employee 22 badge</label>
 <max>Making contact</max>
 <min>No contact</min>
</sensor>

Switch Example:
<actuator addr="B700000018AE3212" type="Switch">
 <label>Buzzer</label>
 <max>Buzz!!!</max>
 <min>Sleep</min>
 <channel>0</channel>
 <init>0</init>
</actuator>

The Contact Example above shows a sensor of type "Contact". It uses the <label>, <max>, and <min>
child elements. However, when parsed, the software object created for this particular tagged device will
contain all eight child elements as data members. The Switch Example shows an actuator of type Switch"
and uses five of the eight child elements.

Keep in mind that child elements do not necessarily mean the same thing for each "type" of tagged
device. Although the element <label> has a generic meaning across all types, most of the other
elements do not.

The above two examples show <max> and <min> child elements with different meanings. The Contact
Example uses <max> and <min> to describe the two different possible states of the "Contact" tagged
device. The Switch Example shows <max> and <min> being used as state selections. This means that
they are used to select the state into which the tagged device can be placed. And, finally, the example
below shows <max> being used by itself as an event message.

Example 6. Child Element <max> Usage

<sensor addr="B200000018BC2A12" type="Event">
 <label>Switch #1</label>
 <max>Activity sensed!</max>
 <channel>1</channel>
</sensor>

Page 5 of 20

Table 1 below shows a list of types and the child elements used by each type. The "x" marks a "used"
element.

Table 1. Child Elements Used by Type

Type
Child Elements

label max min channel init scale hightrip lowtrip

Switch x x x x x

Contact x x x

Event x x x

Level x x x x

Thermal x x x x x

Humidity x x x x x

A2D x x x x x x

Pressure x x x x x

Date x x x x x

Label
The <label> child element is used primarily to describe the tagged device. It can be used to label a
device, give location information, and give revision numbers or dates. Below is an example of the <label>
child element.

Example 7. Child Element <label>

<sensor addr="E200000006283826" type="Humidity">
 <label>Indoor Humidity Sensor</label>
</sensor>

In the above example, the <label> element describes the "Humidity" sensor as an "Indoor Humidity
Sensor".

Max
The <max> child element can be used in several different ways. This document shows the use of <max>
in three specific ways. They are described above in Examples 5 and 6. Keep in mind that neither <max>
nor any other child element is limited to the definitions contained in this document. It is left to the
individual developer to give meaning to the child element when creating a new "type" of sensor or
actuator.

Min
Opposite to <max>, the <min> child element also can be used in different ways. In the "Contact" type of
tagged device (see the "Types" section of this document), <min> is used to describe one of the two
different possible states that the device can have. The "Switch" type of tagged device shows <min> being
used as a state selection. And, finally, although no type of tagged device implements it, <min> can be
used by itself as an event message similar to <max> in the discussion above.

Page 6 of 20

Channel
The <channel> child element is generally used to select a particular choice from an array of choices. It
should be represented as an integer number. For example, in the types "Branch", "Switch", and "Event",
the child element <channel> is used to choose a particular switch from an array of 2 switches. In the
example below, <channel> is "1" which will select the second switch.

Example 8. Child Element <channel> Example With Type "Event"

<sensor addr="B200000018BC2A12" type="Event">
 <label>Switch #1</label>
 <max>Activity sensed!</max>
 <channel>1</channel>
</sensor>

Init
The <init> child element is generally used as a state initializer for tagged devices, especially actuators. If
there is any state that the tagged device should be in before it is exercised, this is the child element to
use. It can be any data type needed. In the example below, the tagged device of type "Switch" uses the
child element <init> to initialize the "Switch" to the "off" position (represented here by the number 0).

Example 9. Child Element <init>

<actuator addr="B700000018AE3212" type="Switch">
 <label>Buzzer</label>
 <max>Buzz!!!</max>
 <min>Sleep</min>
 <channel>0</channel>
 <init>0</init>
</actuator>

Scale
The <scale> child element is generally used for tagged devices when a scale is needed to display
results or display the kinds of state selections available.

Hightrip
The <hightrip> child element is generally used for tagged devices, usually sensors, when a high trip
value is needed for detecting high values. An example of its use would be to detect if a refrigerated air
conditioning system needed to turn on when the temperature of a particular room got too hot. It can also
be used for a clock alarm and for humidity or pressure sensing.

Lowtrip
The <lowtrip> child element is generally used for tagged devices when a low trip value is needed for
detecting low values of a condition being monitored or sensed. An example of its use would be to detect
if a heating system needed to be turned on when the temperature of a particular room got too cold. It
can also be used for humidity or pressure sensing. An example of <lowtrip> and <hightrip> can be found
below.

Example 10. Child Elements <hightrip> and <lowtrip>

<sensor addr="E200000006283826" type="Thermal">
 <label>Indoor Temperature</label>
 <lowtrip>18.0</lowtrip>
 <hightrip>30.0</hightrip>

Page 7 of 20

 <min>It's too cold, please turn up the heat</min>
 <max>It's too hot, please turn on the air conditioner</max>
</sensor>

User-Defined Child Elements
The programmer or end-user is not limited to use only the enumerated child elements above. One of the
advantages to using XML is its ability to be extended. Using more elements should not negatively affect
or impact this specification. In fact, using more child elements is encouraged. Some suggestions are:
<manufacturer>, <date>, <netregistration>, and <enum>. The <manufacture> element could contain
information on the manufacturer of the 1-Wire part or cluster/subsystem. The <date> tag, of course,
would provide the date of manufacture. Many companies use the format of WWYY where W stands for
the work week number and YY stands for the year. The element <netregistration> could contain a URL
to the manufacturer's website, or possibly to a server where the software for the particular 1-Wire part or
cluster can be automatically downloaded and run. Finally, <enum> could specify a serialization number
that keeps track of the actual 1-Wire part or cluster, so each part or cluster that gets tagged receives a
unique incremental number. This number could then be stored in a database giving part traceability.

Types
Types are very important to 1-Wire Tagging. Each tagged device (whether a sensor, actuator, or branch)
will have a unique software object created for it based on its type. Although the software object will
contain all the child elements listed above as data members, the implementations of the methods will be
different. This will be based on the type attribute parsed for a tagged device. At the time of this writing,
nine types have been identified: Contact, Event, Switch, Level, Thermal, Humidity, A2D, Pressure, and
Date. Please note that the value of type should always be capitalized in a 1-Wire Tag. In the Java
implementation of the XML 1-Wire Tagging scheme, the type is the actual name of the software object,
and it is instantiated dynamically at run-time.

The types of 1-Wire Tags can be classified into two groups: actuators and sensors (with branches being
their own unique type). These groups directly correlate to the <actuator> and <sensor> parent XML
elements. As mentioned previously, actuators are tagged devices that can be acted upon or can be
exercised, and sensors are tagged devices that can monitor or sense a specific condition and give a
reading when asked. Out of the nine types, one of them is classified as an actuator, and eight of them
are classified as sensors. The actuator type is Switch. Thus, if a 1-Wire Tag specifies the <actuator>
element, its type will be Switch. Conversely, if a 1-Wire Tag specifies the <sensor> element, its type will
be one of the sensors: Contact, Event, Level, Thermal, Humidity, A2D, Pressure, or Date. Please note
that the examples listed in this section will be complete 1-Wire Tags with an appropriate XML header
included for each example.

Actuator Types
The actuator type identified by this document is Switch. The Switch type represents any device in the
family of 1-Wire switches. Among them are the DS2406, DS2413, and the DS28EA00. The Switch, when
parsed by the XML parser, will return software objects that, when queried, will give an array of state
selections from which to choose. When a particular selection is chosen, then the state of the actuator is
changed to the selection made. For the Switch type, the selections are either an open connection or a
closed connection.

Switch
A "Switch" actuator has five child elements: <label>, <max>, <min>, <channel>, and <init>. In the
example below, <label> is used to describe the actuator as a buzzer. The <max> child element
describes a state selection. If the <max> state is chosen, the "Buzzer" will "Buzz!!!". The <min> child

Page 8 of 20

element also describes a state selection, but, of course, it is opposite to <max>. If the <min> selection is
chosen, the buzzer will stop buzzing and "Sleep". The <channel> child element represents the specific
switch on the 1-Wire Tagged device to be exercised, and the <init> child element describes the initial
state of the switch which, in this case, is disconnected (represented by the integer 0).

Example 11. "Switch" 1-Wire Tag

<?xml version="1.0" encoding="UTF-8"?>
<actuator addr="B700000018AE3212" type="Switch">
<label>Buzzer</label>
 <max>Buzz!!!</max>
 <min>Sleep</min>
 <channel>0</channel>
 <init>0</init>
</actuator>

Sensor Types
The sensor types identified by this document are Contact, Event, Level, Thermal, Humidity, A2D,
Pressure, and Date. Contact makes use of any 1-Wire device, and its purpose is to sense if the tagged
device is present on the 1-Wire bus. An Event sensor's purpose is to detect if activity has occurred on a
particular 1-Wire switch. Level is a sensor used to detect the level of a 1-Wire switch, which can be
conducting or non-conducting. Thermal, as its name implies, is a sensor used to sense the temperature
of its surroundings, and can be used with any 1-Wire digital thermometer. A partial list of them includes
the DS1921, DS1920, DS2438, DS18S20, and the DS18B20. Humidity senses humidity, and as of the
writing of this document, pertains to the DS1923. A2D senses voltages coming from an analog-to-digital
1-Wire device. Among these are the DS2438 and the DS2450. Pressure, of course, is a sensor that
detects pressure. It is listed in this document as a placeholder because, currently, no 1-Wire pressure
sensor is available commercially. And, finally, Date is a sensor that detects elapsed time.

Contact
A "Contact" sensor has three child elements: <label>, <max>, and <min>. Of course, <label> is used to
describe the sensor. In the example below, <label> indicates that this 1-Wire device is the badge of
employee number 22. The <max> child element describes the state of the device being present on the
1-Wire bus, and the <min> child element describes the opposite state. Notice that the type, "Contact", is
capitalized. An example of a complete 1-Wire Tag of type "Contact" with the appropriate XML header is
shown below.

Example 12. "Contact" 1-Wire Tag

<?xml version="1.0" encoding="UTF-8"?>
<sensor addr="490000000212D016" type="Contact">
 <label>Employee 22 badge</label>
 <max>Making contact</max>
 <min>No contact</min>
</sensor>

Event
An "Event" sensor has three child elements: <label>, <max>, and <channel>. Of course, <label> is used
to describe the sensor. In the example below, <label> specifies that the indicated 1-Wire device is
"Switch #1" (of possibly many other switches) on the 1-Wire bus. The <max> child element is the event
message whenever activity on the switch has been sensed. And, the <channel> child element represents
the specific switch on the 1-Wire Tagged device to be sensed.

Example 13. "Event" 1-Wire Tag

Page 9 of 20

<?xml version="1.0" encoding="UTF-8"?>
<sensor addr="B200000018BC2A12" type="Event">
 <label>Switch #1</label>
 <max>Activity sensed!</max>
 <channel>1</channel>
</sensor>

Level
A "Level" sensor has four child elements: <label>, <max>, <min> and <channel>. Again, <label> is used
to describe the sensor. In the example below, the cluster name attribute specifies that the indicated 1-
Wire device is a DS2406. This DS2406 is actually a cluster of two tagged devices. The first is of type
"Level", and the second is of type "Switch". For the "Level" sensor, the <label> element describes the
sensor as a "Refrigerator Door Light". The <max> child element is the event message whenever the
switch is in a conducting state. Thus, the associated message for the event would be "Light is on".
Conversely, the <min> event message indicates that the switch is in the non-conducting state giving the
message "Light is off". And, the <channel> child element represents the specific switch on the 1-Wire
Tagged device to be sensed.

Example 14. "Level" 1-Wire Tag

<?xml version="1.0" encoding="UTF-8"?>
<cluster name="DS2406 Demo">
 <sensor addr="36000000000F2212" type="Level">
 <label>Regrigerator Door Light</label>
 <max>Light is on</max>
 <min>Light is off</min>
 <channel>0</channel>
 </sensor>
 <actuator addr="36000000000F2212" type="Switch">
 <label>Contact Maker</label>
 <min>Open Circuit</min>
 <max>Make Contact</max>
 <channel>1</channel>
 <init>0</init>
 </actuator>
</cluster>

Thermal
A "Thermal" sensor has three child elements: <label>, <lowtrip>, <hightrip>, <max>, and <min>. Of
course, <label> is used to describe the sensor. In the example below, <label> indicates that this tagged
device is sensing an indoor temperature.

Optionally, a tagged device of type "Thermal" can have trip points monitored both at a high level or a low
level. Like a thermostat, it may be desirable to know when a temperature surpasses a given temperature
and again when it drops below a given temperature. To do this, the <hightrip> and <lowtrip> elements
are used to set the monitored high and low levels (as a floating point number), and the <min> and
<max> elements are used to contain simple text messages to be used when the trip points are
surpassed. See the example below.

Example 15. "Thermal" 1-Wire Tag

<?xml version="1.0" encoding="UTF-8"?>
<sensor addr="E200000006283826" type="Thermal">
 <label>Indoor Temperature</label>
 <lowtrip>18.0</lowtrip>
 <hightrip>30.0</hightrip>
 <min>It's too cold, please turn up the heat</min>
 <max>It's too hot, please turn on the air conditioner</max>

Page 10 of 20

</sensor>

Humidity
A "Humidity" sensor's first child element is <label>. In the example below, <label> indicates that the
specified tagged device is sensing an outdoor humidity.

Optionally, a tagged device of type "Humidity" can have trip points monitored both at a high level or a
low level. It may be desirable to know when the monitored humidity surpasses a given value and again
when it drops below a given value. To do this, the <hightrip> and <lowtrip> elements can be used to set
the monitored high and low levels. These levels should be represented as floating point numbers. The
<min> and <max> elements are used to contain simple text messages to be used when the trip points
are surpassed. See the example below.

Example 16. "Humidity" 1-Wire Tag

<?xml version="1.0" encoding="UTF-8"?>
<sensor addr="E200000006283826" type="Humidity">
 <label>Outdoor Humidity</label>
 <lowtrip>20.0</lowtrip>
 <hightrip>90.0</hightrip>
 <min>It's too dry</min>
 <max>Expect fog or rain</max>
</sensor>

A2D
An "A2D" sensor has six child elements: <label>, <channel>, <lowtrip>, <hightrip>, <min>, and <max>.
The "A2D" sensor's first child element is <label>. In the example below, <label> indicates that the
specified tagged device is sensing a voltage. Since A2D tagged devices have multiple channels on
which to do analog-to-digital conversions, the element <channel> is used to determine which channel to
read. Thus, the <channel> element is represented as an integer number. In the example below, the
<channel> element indicates that the first channel, channel 0, is the one that should be read.

Optionally, a tagged device of type "A2D" can also have trip points monitored both at a high level or a
low level. Consequently, when the voltage surpasses a given value and again when it drops below a
given value, the <min> and <max> messages will be given. The <hightrip> and <lowtrip> elements
represent the high and low values being monitored and should be given as floating point numbers.

Example 17. "A2D" 1-Wire Tag

<?xml version="1.0" encoding="UTF-8"?>
<sensor addr="E200000006283826" type="A2D">
 <label>Voltage Monitor</label>
 <channel>0</channel>
 <lowtrip>2.0</lowtrip>
 <hightrip>4.0</hightrip>
 <min>Voltage too low</min>
 <max>Voltage too high</max>
</sensor>

Pressure
The "Pressure" sensor is made up of four child elements: <label>, <lowtrip>, <hightrip>, <min>, and
<max>. The Pressure sensor's first child element is <label>. In the example below, <label> indicates that
the specified tagged device is sensing outdoor barometric pressure.

A tagged device of type "Pressure" can also have trip points monitored both at a high level or a low
level. It may be advantageous to know when the monitored pressure surpasses a given value and again

Page 11 of 20

when it drops below a given value. The <hightrip> and <lowtrip> elements can be used to give the
monitored high and low levels (as floating point numbers), and the <min> and <max> elements can be
used as the source of simple text messages to be sent when the trip points are surpassed. See the
example below. Currently, the Pressure type is just a placeholder, since at the time of this writing, no 1-
Wire device directly supports pressure sensing.

Example 18. "Pressure" 1-Wire Tag

<?xml version="1.0" encoding="UTF-8"?>
 <sensor addr="E200000006283826" type="Pressure">
 <label>Outdoor Barometric Pressure</label>
 <lowtrip>28.0</lowtrip>
 <hightrip>31.0</hightrip>
 <min>Low pressure</min>
 <max>High pressure</max>
</sensor>

Date
The "Date" tagged device is a sensor because its purpose is to read the time/date value and display it.
In this case, the device could be one of many different 1-Wire devices. Among these are the DS1904,
DS1921, DS2417, and the DS2438.

Example 19. "Date" 1-Wire Tag

<?xml version="1.0" encoding="UTF-8"?>
<sensor addr="27000000036D9B24" type="Date">
 <label>My iButton Clock</label>
 <hightrip>1000000</hightrip>
 <max>Time to buy another car</max>
</sensor>

The "Date" sensor's first child element is <label>. In the example above, <label> indicates that the
specified tagged device is acting as an iButton clock. Optionally, a tagged device of type "Date" could
also have a single trip point. If the time/date goes beyond a certain time (the trip point), then an
appropriate text message gets sent. In the above example, the <hightrip> element is set at 1000000
seconds since 1970, so whenever the seconds surpasses 1000000, the message indicated by the
<max> element gets sent "Time to buy another car". Please note that <hightrip> is a long integer
representing the seconds since 1970, and the <max> element represents the text message when the
clock surpasses the hightrip value.

Mini Tags
Due to memory constraints on 1-Wire devices, it is highly desirable to make 1-Wire XML tags as small as
possible. In some extreme cases where normal XML tags are too large, this can be accomplished
through mini tags. In short, mini tags are single XML elements with empty content. They reside in a raw
ASCII form in the memory of the 1-Wire device. In this specification, they should be ignored if found
outside of 1-Wire devices. It is recommended to use mini tags only if they are absolutely necessary. They
part from XML industry standards in two ways. The first is that they are not valid XML documents in and
of themselves (they are only valid XML elements). And, secondly, mini tags are not very human readable.

Mini Tag Format
A mini tag has the format of <TTNNCI/> in standard ASCII. TT is a 2-letter identifier for the "Type" of
tagged device. NN is a 2-digit identifier signifying the implementation number of a device. "C" is optional
and is a number corresponding to the <channel> child element tag. "I" is also optional and is a number
corresponding to the <init> child element tag. Please see the sections pertaining to <channel> and <init>

Page 12 of 20

in this document under "Child 1-Wire XML Elements". In the unlikely event that an "I" identifier exists
without a "C" identifier, underscores should be placed where the "C" digit would normally go.

For example, the empty XML element, <HU10/>, if it is found in the memory of a 1-Wire device, can be
considered a mini tag. It consists of 7 ASCII bytes: 3C 48 55 31 30 2F 3E. According to the format
above, we know that the 2-letter identifier of the part is HU. Looking up HU, in the mini tag table below,
we find that "HU" is of tagged device type "Humidity". The 2-digit implementation number, NN, is "10".
Although NN is subjective in nature, the number picked should have some attached meaning and in this
case, stands for the last 2 digits of the humidity sensor's part number. For the mini tag <HU10/>, the C
and I identifiers are not needed and thus, not included.

Table 2. Mini Tag Type Abbreviations

Mini Tag 2-Letter
Abbreviation Type

SW Switch (actuator)

CO Contact (sensor)

EV Event (sensor)

LV Level (sensor)

TH Thermal (sensor)

HU Humidity (sensor)

AD A2D (sensor)

PR Pressure (sensor)

DT Date (sensor)

Mini Tag Translation
The mini tag obviously is not a complete XML document that can be parsed, but it can easily be
translated into one. This process is called mini tag translation. Mini tag translation takes the mini tag and
translates it into a 1-Wire Tagging XML document. For example, the mini tag, <HU10/>, can be
translated into the following 1-Wire Tagging XML document found in the example below.

Example 20. Mini Tag Translation of <HU10/>

<?xml version="1.0" encoding="UTF-8"?>
<sensor addr="E200000006283826" type="Humidity">
</sensor>

The first step in translating the mini tag to an XML document is by pre-pending the following XML header
to the beginning of the document: <?xml version="1.0" encoding="UTF-8"?>. The second step is to look
up the mini tag's 2-letter type descriptor in the above table and retrieve the type attribute and parent
element. In this case, the type attribute is "Humidity" and the parent element is <sensor>. The last step
is to determine the addr attribute of the tagged device. This, of course, is the 1-Wire network address
and is already known through the 1-Wire search protocol that occurred previously (by discovering the
device and reading its memory contents).

XML 1-Wire Tag Nesting

Page 13 of 20

The example shows the nesting of branches. The first branch is a "Hub Switch", the second branch
resides in a Weather Station cluster and implements a "Contact" sensor to determine if a North wind is
blowing. In a similar fashion, clusters can also be nested.

Example 21. Nested Branches 1-Wire Tag

<?xml version="1.0" encoding="UTF-8"?>
<branch addr="B700000018AE3212" >
 <label>Hub Switch #1</label>
 <channel>1</channel>
 <init>0</init>
 <cluster name="1-Wire Weather Station #2">
 <sensor addr="E200000006283826" type="Thermal">
 <label>Outdoor Temperature</label>
 </sensor>
 <branch addr="77000000023CEC12" >
 <label>Wind Vane Switch</label>
 <channel>1</channel>
 <init>0</init>
 <sensor addr="0E00000200522401" type="Contact">
 <label>North Wind</label>
 <max>Making contact</max>
 <min>No contact</min>
 </sensor>
 </branch>
 </cluster>
</branch>

Software Implementation
The above sections of this document provide data on what makes up XML 1-Wire Tags and how to write
them. With that in mind, the details of an example software implementation that parses and uses the
tags can be discussed. As of the time of this writing, a reference implementation of the software has
been successfully developed in Java with the 1-Wire API for Java, so the discussion will center around
Java, and, thus, object-oriented terminology. The 1-Wire API for Java can be found and downloaded
here: www.maximintegrated.com/products/ibutton/software/1wire/1wire_api.cfm.

The Parser
As has been discussed above, the Java implementation of XML 1-Wire Tagging is based on a
SAXcompliant XML parser. The reason for choosing this kind of parser is its lightweight implementation
and thus its ability to run on very small handheld devices, such as MxTNI. Any SAX parser can be used
for XML 1-Wire Tagging, and two Java SAX parsers known to work well are MinML (www.wilson.co.uk/)
and NanoXML (http://nanoxml.sourceforge.net).

Software Object Creation
As Figure 1 below shows, the SAX parser takes the XML 1-Wire Tags, parses them, and, with the help
of the 1-Wire Tagging software libraries, generates two collections of software objects. This is the
highest level view of software object creation. The first collection is a dynamic array of software objects
representing tagged devices. In the Java reference implementation, the class name for the tagged device
software object is TaggedDevice, and a dynamic array is called a Vector.

The second collection consists of a dynamic array of software objects representing the network topology
of the 1-Wire network, otherwise known as 1-Wire paths. In essence, they can be thought of as paths to
get to specific actuators or sensors through a set of branches (1-Wire switches). In the Java reference
implementation, the class name for this "path" object is OWPath.

Page 14 of 20

http://www.maximintegrated.com/products/ibutton/software/1wire/1wire_api.cfm
http://www.maximintegrated.com/tini
http://www.wilson.co.uk/
http://nanoxml.sourceforge.net/

Figure 1. Highest level view of software object creation.

The Tagged Device Software Object
The tagged device software object comes in three flavors: branch, sensor, and actuator. A branch acts
like a switch or a path, a sensor "reads" or "senses" a measurement or activity, and an actuator is a
device that can be exercised or manipulated. All tagged device software objects have the same data
members, but not all are used for each type of tagged device. The Java implementation for the tagged
device software object is "TaggedDevice". For a list and short description of the data members belonging
to the TaggedDevice object, see the table below. All other software implementations should use at least
the software equivalents of the data members listed below.

Table 3. TaggedDevice Data Members With Description

Data Members Description

label String equivalent to <label> child element.

max String equivalent to <max> child element.

min String equivalent to <min> child element.

channel Integer equivalent to <channel> child element.

init String equivalent to <init> child element.

Page 15 of 20

scale String equivalent to <scale> child element.

hightrip Floating point equivalent to <hightrip> child element.

lowtrip Floating point equivalent to <lowtrip> child element.

type String equivalent to type attribute.

clusterName
A String representing the cluster path to the tagged device. If in a nested
cluster, the clusterName is made up of all the clusterNames previous to it
separated by "/". For example, "BuildingC/Roof/WeatherStation#5".

deviceContainer Specific OneWireContainer for the tagged device.

branchPath The 1-Wire path to the tagged device. See the 1-Wire path discussion below.

The data members of the tagged device software object should map very closely to the XML child
elements discussed above. This can be seen in the Java reference implementation of TaggedDevice
shown in the above table. A discussion of the TaggedDevice follows.

The first eight data members of TaggedDevice represent the eight child elements of which many are
strings except channel, hightrip, and lowtrip. The data member, channel, should be an integer and
hightrip and lowtrip should be floating point numbers, since they will be used as such. The data member,
clusterName, is a string that contains the name of the cluster to which the tagged device's software
object belongs. Since clusters can be nested, the clusterName is pre-pended with a path of clusters, if
one exists, similar in nature to a path of a file on a computer. For example, "Building C/Room165/North
Wall" is the valid clusterName for any TaggedDevice found in the "North Wall" cluster. This represents a
nesting of clusters three deep. Notice they are separated by a forward slash, "/".

The implementation of clusterName is done through creating a stack of strings upon the startDocument
event during XML parsing. Then, when a new <cluster> element is discovered during parsing, its text
string is "pushed" on the stack, and when the <cluster> element ends, the <cluster> string is "popped"
off the stack. All TaggedDevice objects that get created between the beggining and end of the <cluster>
element take a snapshot of the stack and save it with "/" as separators into the clusterName data
member.

The deviceContainer is a very important data member of the TaggedDevice. It is a OneWireContainer
that is specific to the 1-Wire device. It contains all the methods and fields necessary to completely
access and exercise a specific tagged device. OneWireContainer objects are part of and are described
fully in the 1-Wire API for Java (www.ibutton.com/software/1wire/1wire_api.html). The OneWireContainer
object gets instantiated for the TaggedDevice object when, during XML parsing, the addr attribute is
encountered, which is equivalent to the tagged device's 1-Wire net address.

Keep in mind that the OneWireContainer software object is only available in the 1-Wire API for Java. So,
for other possible non-Java implementations of XML 1-Wire Tagging, the developer will need to use a
collection of variables and functions in other 1-Wire software libraries to construct a software equivalent
to deviceContainer.

Finally, the last data member of TaggedDevice is branchPath. This is the 1-Wire path of the tagged
device. A 1-Wire path is a path to get to specific actuators or sensors through a set of 1-Wire switches.
In the Java reference implementation, a 1-Wire path software object is called an OWPath. Similar to the
OneWireContainer object, the OWPath object is also fully described in the 1-Wire API for Java. A
discussion of 1-Wire paths and the Java equivalent OWPath follows.

Page 16 of 20

http://www.ibutton.com/software/1wire/1wire_api.html

The 1-Wire Path Software Object
The 1-Wire path software object's purpose is to act like a path, similar in nature to the path of a file on a
computer. Only the "path" here is the idea of a path through possibly many nested branches (1-Wire
switches) to access a particular tagged device. The 1-Wire path software object should be made up of at
least a few fundamental data members and methods. One important data member would be a collection
of the 1-Wire net addresses of the various 1-Wire switches making up the paths. Another important data
member would be a collection of the specific channel on each device to be exercised to access the
desired sensor or actuator (since some 1-Wire switch devices have more than one switch per device).
Also in the 1-Wire path software object, the methods for opening a path and closing a path should be
included. The act of "opening" a path, means to loop through each 1-Wire branch device listed in the 1-
Wire path and select the appropriate switch, and flip each switch to its "conducting" position. Conversely,
"closing" the 1-Wire path would be flipping the appropriate switches to their "non-conducting" positions.

In the Java reference implementation for 1-Wire Tagging, the 1-Wire path software object is called the
OWPath. This is what makes up the branchPath data member of the TaggedDevice object listed in Table
3 above. OWPath objects are also what make up the dynamic array (vector) of 1-Wire path software
objects produced through XML parsing shown in Figure 1 above. The OWPath object is available
through the 1-Wire API for Java, and the tagging reference implementation uses it extensively.

There are two cases in the reference implementation where OWPath objects are necessary. The first is
in the TaggedDevice object, the branchPath, and the second is in the vector returned from parsing an
XML tag. In the first case, each TaggedDevice's branchPath is created through keeping track of a branch
stack during XML parsing. The stack mentioned here is the well-defined software structure called a
"stack" with the usual accompanying methods of "push" and "pop". Thus, the branch stack is a stack of
1-Wire branches (or switches). When the TaggedDevice object is created during XML parsing, the
current branch stack is copied to a temporary object belonging to TaggedDevice. Then, after the XML
document is completely parsed, the resulting vector of TaggedDevice objects is iterated through and
each branch stack stored is used to create the OWPath object.

In the second case where OWPath objects are necessary, something similar takes place. For creating
the vector returned from parsing an XML tag, the same branch stack above is used. Only this time, the
branch stack is copied to a temporary vector just before the branch stack gets "popped". After XML
parsing completes, the vector of branch stacks is iterated through and used to create the vector of
OWPath objects.

Extending the Tagged Device's Software Object
In object-oriented terms, the array of tagged device software objects returned by parsing 1-Wire Tags,
should actually be an array of extended tagged device software objects, with the exception of a branch.
This means that they all contain the data members and methods associated with a tagged device
software object, but they may have additional data members and methods and/or method
implementations unique to their type. For example, a "Contact" device will have different methods and/or
method implementations than a "Switch" device. Please see Table 1 above entitled "Child Elements
Used By Type" for a list of types that have been identified by this document.

Each type of device will have its own unique tagged device software object associated with it. Thus, if
more 1-Wire devices are designed that fall into a new type category, a new software object will need to
be written for it. For the Java reference implementation, each "type" of tagged device has its own class
file with the statement "extends TaggedDevice" in its source code. For example, the Contact type has a
Contact.class written specifically for it. These software objects, then get invoked whenever the XML
parses a 1-Wire Tag that specify them. As an added bonus, the Java reference implementation of 1-
Wire Tagging invokes the software objects dynamically at run-time.

Page 17 of 20

Sensor and Actuator Interfaces
To abstract things further, this document specifies that a sensor and actuator interface be used for each
tagged device's software object. The term interface here is used in the Java sense of the term. An
interface simply means that any software object that says it implements the interface must implement
specific methods that the interface defines. For example, the sensor interface, called TaggedSensor in
the Java implementation, consists of only one method, readSensor(). The readSensor() method defined
in the interface returns a string representing the most current reading of the sensor. By implementing the
interface, the software object is guaranteeing that it will provide a method called readSensor() that
accepts no arguments and returns a string. Therefore, all tagged devices that are sensors, will be
guaranteed to have the method readSensor(). For example, calling the readSensor() method in the
sensor of type "Thermal", which in Java is in the Thermal.class, could return "23.5 degrees Celsius" as a
possible return value.

Similarly, the actuator interface consists of a few specific method definitions. In the Java implementation,
it is called TaggedActuator. The actuator interface consists of the following three methods:
getSelections(), setSelection(String selection), and initActuator(). The first method, getSelections(),
retrieves the state selections that can be changed or exercised on the actuator. They are returned as a
dynamic array of strings, or a vector of strings in the Java implementation. The second method,
setSelection(String selection), actually sets the state on the actuator given a string that matches one of
the selections. And, finally, the third method, initActuator() initializes the actuator to a pre-defined state.
This method should be called before calling the other two.

For the Java implementation of this specification, each new type of TaggedDevice object will have the
statement "extends TaggedDevice" in its source code and either "implements TaggedSensor" or
"implements TaggedActuator" as well. For example, the source code of the "Contact" type of
TaggedDevice has the following line, "public class Contact extends TaggedDevice implements
TaggedSensor".

The Master Application
The master application is a program that exercises the tagging software libraries. It is responsible for
interfacing with the user, for thread management, for 1-Wire synchronization, for catching 1-Wire
exceptions, and for searching branches for tags and mini tags. An example master application is
included with the Java implementation of this specification. It demonstrates good programming practices
when using the Java 1-Wire Tagging libraries.

Optionally, a 1-Wire Tag creation application could be created for a master application or its functionality
could be used as part of the master application. A 1-Wire Tag creator simply creates XML 1-Wire Tag
files specifically for a developer's program. It could prompt the user in wizard-like fashion for the
appropriate tag elements, and when properly filled out, it could write the XML document or mini tag to
the appropriate 1-Wire device or file. There is an example one available in the Java reference
implementation of 1-Wire Tagging.

Conclusion
This document, when implemented in software, not only solves the general problem brought up by the
introduction section of this document, but also enhances and simplifies the use of 1-Wire devices in real
world applications. The problem in the introduction described a scenario where two switches are found
on a 1-Wire network. One switch is used as a branch beyond which other 1-Wire devices are located,
and the other switch is used to open a high security door. In this situation, the problem is the difficulty in

Page 18 of 20

differentiating between the two devices without first exercising them and inadvertently opening the high-
security door in the process.

XML 1-Wire Tagging is the solution. Here is an example tag that would differentiate between the
functionality of the two switches beforehand.

Example 22. High Security Door 1-Wire Tag

<?xml version="1.0" encoding="UTF-8"?>
<cluster name="Area 51">
 <branch addr="2700000016EF3A12" >
 <label>Secure Room #1</label>
 <channel>1</channel>
 <init>0</init>
 <sensor addr="490000000212D016" type="Contact">
 <label>Government Badge #52</label>
 <max>Making contact</max>
 <min>No contact</min>
 </sensor>
 .
 . (Other possible branches, actuators, or sensors)
 .
 </branch>
 <actuator addr="B700000018AE3212" type="Switch">
 <label>High Security Door: Alien Room</label>
 <max>Security cleared, door opened!</max>
 <min>Door shut and locked!</min>
 <channel>0</channel>
 <init>0</init>
 </actuator>
</cluster>

As can be seen in Example 22 above, the high-security door problem disappears. The first switch is
shown to be a branch and clearly labeled as "Secure Room #1". Beyond the switch, we know that a
Contact sensor is provided which, again is clearly labeled as "Government Badge #52". Any number of
1-Wire sensors, actuators, or branches could be grouped on the other side of the first switch.

The second switch is clearly marked as a "High Security Door: Alien Room", and it is identified as an
actuator of the type "Switch". According to the 1-Wire device's XML elements, we know that the door is
behind channel 0 (the first switch on the 1-Wire device) and that the switch on channel 0 is initialized to
0, or "non-conducting" when the program starts up. This means that the door is shut and locked upon
program startup.

In the scenario above, not only does the problem get solved, but other desirable features such as
grouping and even database-like functions get shown. For example, the entire 1-Wire Tag is grouped
together as a cluster, entitled "Area 51". This shows that the 1-Wire Tag is easily extended to other 1-
Wire clusters or groups. It also provides for 1-Wire network topology definition including the "nesting" of
switches, and it provides simple database-like features, for instance, like keeping track of a list of people
who have access to a high-security door. In conclusion, not only does 1-Wire Tagging solve a problem,
but it enhances the developers and end users use and deployment of 1-Wire devices with the help of an
industry standard, XML.

1-Wire is a registered trademark of Maxim Integrated Products, Inc.
iButton is a registered trademark of Maxim Integrated Products, Inc.
Java is a registered trademark and registered service mark of Oracle and/or its affiliates.
MxTNI is a trademark of Maxim Integrated Products, Inc.

Page 19 of 20

Related Parts

DS18B20 Programmable Resolution 1-Wire Digital Thermometer Free Samples

DS18B20-PAR 1-Wire Parasite-Power Digital Thermometer

DS18S20 1-Wire Parasite-Power Digital Thermometer Free Samples

DS18S20-PAR Parasite-Power Digital Thermometer

DS1920 iButton Temperature Logger

DS1923 iButton Hygrochron Temperature/Humidity Logger with
8KB Data-Log Memory

DS2406 Dual Addressable Switch Plus 1Kb Memory Free Samples

DS2413 1-Wire Dual Channel Addressable Switch Free Samples

DS2438 Smart Battery Monitor Free Samples

DS2450 1-Wire Quad A/D Converter

MAX31820 1-Wire Ambient Temperature Sensor Free Samples

MAX31820PAR 1-Wire Parasite-Power, Ambient Temperature Sensor

More Information
For Technical Support: http://www.maximintegrated.com/support
For Samples: http://www.maximintegrated.com/samples
Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 158: http://www.maximintegrated.com/an158
APPLICATION NOTE 158, AN158, AN 158, APP158, Appnote158, Appnote 158
© 2013 Maxim Integrated Products, Inc.
Additional Legal Notices: http://www.maximintegrated.com/legal

Page 20 of 20

http://www.maximintegrated.com/datasheet/index.mvp/id/2812
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS18B20
http://www.maximintegrated.com/datasheet/index.mvp/id/2813
http://www.maximintegrated.com/datasheet/index.mvp/id/2815
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS18S20
http://www.maximintegrated.com/datasheet/index.mvp/id/2816
http://www.maximintegrated.com/datasheet/index.mvp/id/2818
http://www.maximintegrated.com/datasheet/index.mvp/id/4379
http://www.maximintegrated.com/datasheet/index.mvp/id/2907
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS2406
http://www.maximintegrated.com/datasheet/index.mvp/id/4588
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS2413
http://www.maximintegrated.com/datasheet/index.mvp/id/2919
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS2438
http://www.maximintegrated.com/datasheet/index.mvp/id/2921
http://www.maximintegrated.com/datasheet/index.mvp/id/8130
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX31820
http://www.maximintegrated.com/datasheet/index.mvp/id/8132
http://www.maximintegrated.com/support
http://www.maximintegrated.com/samples
http://www.maximintegrated.com/contact
http://www.maximintegrated.com/an158
http://www.maximintegrated.com/legal

	maximintegrated.com
	1-Wire® Tagging with XML - Application Note - Maxim

