

APPLICATIONS

- ➤ Low Cost Analog and Digital Data Links
- ➤ Automotive Electronics
- ➤ Digitized Audio
- ➤ Medical instruments
- ➤ PC-to-Peripheral Data Links
- ➤ Robotics Communications
- ➤ Motor Controller Triggering
- ➤ EMC/EMI Signal Isolation
- ➤ Local Area Networks
- ➤ Intra-System Links: Board-to-Board. Rack-to-Rack

DESCRIPTION

The IF-E96 is a low-cost, high-speed, visible red LED housed in a "connectorless" style plastic fiber optic package. The output spectrum is produced by a GaAlAs die which peaks at 660 nm, one of the optimal transmission windows of PMMA plastic optical fiber. The device package features an internal microlens and a precision-molded PBT housing to maximize optical coupling into standard 1000 μm core plastic fiber cable.

APPLICATION HIGHLIGHTS

The performance/price ratio of the IF-E96 is particularly attractive for high volume design applications. The visible red output has low attenuation in PMMA plastic fiber and aids in troubleshooting installations. When used with an IF-D96 photologic detector the IF-E96 can achieve data rates of 5 Mbps. Fast transition times and low attenuation make the IF-E96 an excellent device selection for low cost analog and digital data links up to 75 meters.

FEATURES

- ◆ High Performance at Low Cost
- ◆ Visible Red Output Aids Troubleshooting
- ◆ Low Transmission Loss with PMMA Plastic Fiber
- ◆ Fast Transition Times
- Mates with standard 1000 μm core jacketed plastic fiber cable
- ◆ No Optical Design required
- ◆ Internal Micro-Lens for Efficient Optical Coupling
- ◆ Inexpensive Plastic Connector Housing
- ◆ Connector-Less Fiber Termination
- ◆ Light-Tight Housing Provides Interference-Free Transmission

MAXIMUM RATINGS

 $(T_A = 25^{\circ}C)$

Operating and Storage Temperature Range (T _{OP} , T _{STG})40° to 85°C
Junction Temperature (TJ)85°C
$ \begin{array}{lll} \mbox{Soldering Temperature} \\ \mbox{(2 mm from case bottom)} \\ \mbox{(T_S)} \ t \! \leq \! 5s240 ^{\circ} \mbox{C} \\ \end{array} $
Reverse Voltage $(V_{\mbox{\scriptsize R}})$
Power Dissipation (P_TOT) $T_A = 25^{\circ}C$ 60 mW
De-rate Above 25°C1.1 mW/°C
Forward Current, DC $(I_{\mbox{\scriptsize F}})$ 35 mA
Surge Current (I_{FSM}) $t \le 10 \ \mu s$

CHARACTERISTICS (T_A=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Peak Wavelength	$\lambda_{ ext{PEAK}}$	650	660	670	nm
Spectral Bandwidth (50% of I _{MAX})	Δλ	-	20	-	nm
Output Power Coupled into Plastic Fiber (1 mm core diameter). Distance Lens to Fiber ≤0.1 mm, 1 m SH4001 fiber, I _F =20 mA	$\Phi_{ ext{min}}$	125 -9.0	200 -7.0	300 -5.2	μW dBm
Switching Times (10% to 90% and 90% to 10%) (I_F =20 mA)	t _r , t _f	-	.1	-	μs
Capacitance (F=1 MHz)	C ₀	-	30	-	pF
Forward Voltage (I _F =20 mA)	V _f	-	-	1.8	V
Temperature Coefficient, λ _{PEAK}	TC_{λ}		0.2		nm/K

FIGURE 1. Normalized power launched versus forward current.

FIGURE 2. Typical spectral output versus wavelength.

FIGURE 3. Cross-section of fiber optic device.

FIBER TERMINATION INSTRUCTIONS

- 1. Cut off the ends of the optical fiber with a singleedge razor blade or sharp knife. Try to obtain a precise 90-degree angle (square).
- Insert the fiber through the locking nut and into the connector until the core tip seats against the internal micro-lens.
- 3. Screw the connector locking nut down to a snug fit, locking the fiber in place.

NOTES

- Y AND Z ARE DATUM DIMENSIONS AND T IS A DATUM SURFACE.
- 3. POSITIONAL TOLERANCE FOR F DIM (2 PL):

 ⊕ 0.25 (0.010) M T YM ZM
- 4. POSITIONAL TOLERANCE FOR H DIM (2 PL):

 ⊕ 0.25 (0.010) M T YM ZM
- 5. POSITIONAL TOLERANCE FOR Q Ø:
- ⊕ Ø 0.25 (0.010) T

 7. DIMENSIONING AND TOLERANCING PER ANSI
 Y14 5M 1982
- 8. CONTROLLING DIMENSION: INCH

PACKAGE IDENTIFICATION:

- ◆ Blue housing w/ Pink dot
- · PIN 1. Cathode
- PIN 2. Anode

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	23.24	25.27	.915	.995	
В	8.64	9.14	.340	.360	
С	9.91	10.41	.390	.410	
D	1.52	1.63	.060	.064	
Е	4.19	4.70	.165	.185	
F	0.43	0.58	.017	.023	
G	2.54 BSC		.100 BSC		
Н	0.43	0.58	.017	.023	
J	7.62 BSC		.300 BSC		
K	10.35	11.87	.408	.468	
L	1.14	1.65	.045	.065	
N	2.54 BSC		.100 BSC		
Q	3.05	3.30	.120	.130	
R	10.48	10.99	.413	.433	
S	6.98 BSC		.275 BSC		
U	0.83	1.06	.032	.042	
٧	6.86	7.11	.270	.280	
W	5.08 BSC		.200 BSC		
Х	10.10	10.68	.397	.427	

FIGURE 4. Case outline.